Impact of Splitter on Self-Starting Ability of Two-DimensionalHigh Mach Number Inlets
1.College of Energy and Power,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;2.Xi’an ChenXi Aviation Technology Corp.,Ltd.Nanjing Branch,Nanjing 211200,China;3.Sichuan Aerospace Institute of System Engineering,Chengdu 610100,China
XIE Wen-zhong1,GAO Xiao-tian2,WANG Xiao1,ZHANG De-ping3. Impact of Splitter on Self-Starting Ability of Two-DimensionalHigh Mach Number Inlets[J]. Journal of Propulsion Technology, 2019, 40(9): 1963-1971.
[1] Van Wie D M. Scramjet Inlets[J]. Scramjet Propulsion, 2000, 189(1): 447-511.
[2] Van Wie D, Kwok F, Walsh R. Starting Characteristics of Supersonic Inlets[R]. AIAA96-2914.
[3] 王 翼. 高超声速进气道启动问题研究[D]. 长沙: 国防科学技术大学, 2008.
[4] H?berle J, Gülhan A. Experimental Investigation of a Two-Dimensional and a Three-Dimensional Scramjet Inlet at Mach 7[J]. Journal of Propulsion and Power, 2008, 24(5): 1023-1034.
[5] Donde P, Marathe A, Sudhakar K. Starting in Hypersonic Intakes[R]. AIAA2006-4510.
[6] Tang H, Gao Z, Lee C. Numerical Investigation of Dynamic Starting Characteristics for 2-D Variable Geometry Inlet Based on Overset Grid[R]. AIAA2015-4681.
[7] Falempin F, Goldfeld M A, Semenova Y V, et al. Experimental Study of Different Control Methods for Hypersonic Air Inlets[J]. Thermophysics and Aeromechanics, 2008, 15(1): 1-9.
[8] Falempin F, Wendling E, Goldfeld M. Experimental Investigation of Starting Process for a Variable Geometry Air Inlet Operating from Mach 2 to Mach 8[R]. AIAA2006-4513.
[9] Anderson W E, Wong N D. A Two-Dimensional Mixed-Compression Inlet System Designed to Self-Restart at a Mach number of 3.5[J]. Journal of Aircraft, 1970, 7(5): 431-436.
[10] HagenMaier M, Tam C J, Chakravarthy S. Study of Moving Start Door Flow Physics for Scramjets[R]. AIAA99-4957.
[11] Throckmorton R, Schetz J, Jacobsen L. Experimental and Computational Investigation of a Dynamic Starting Method for Supersonic/Hypersonic Inlets[R]. AIAA2010-589.
[12] Ogawa H, Grainger A L, Boyce R R. Inlet Starting of High-Contraction Axisymmetric Scramjets[J]. Journal of Propulsion & Power, 2010, 26(6): 1247-1258.
[13] Wang J Y , Xie L R , Zhao H , et al. Fluidic Control Method for Improving the Self-Starting Ability of Hypersonic Inlets[J]. Journal of Propulsion & Power, 2016, 32(1): 1-8.
[14] Tahir R, Molder S, Timofeev E. Unsteady Starting of High Mach Number Air Inlets—A CFD Study[R]. AIAA2003-5191.
[15] Reubush D, Nguyen L, Rausch V. Review of X-43A Return to Flight Activities and Current Status[R]. AIAA2003-7085.
[16] Kantrowitz A, Donaldson C. Preliminary Investigation of Supersonic Differs[R]. NACA WRL-713, 1945.
[17] Jacobsen L S, Tam C J, Behdadnia R, et al. Starting and Operation of a Streamline-Traced BuseMann Inlet at Mach 4[R]. AIAA2006-4508.
[18] Smart M K, Trexler M K. Mach 4 Performance of Hypersonic Inlet with Rectangular-to-Elliptical Shape Transition[J]. Journal of Propulsion & Power, 2004, 20(2):288-293.
[19] 王卫星, 袁化成, 黄国平, 等. 抽吸位置对高超声速进气道起动性能的影响[J]. 航空动力学报, 2009 , 24(4): 918-924.
[20] 李永洲, 张堃元, 张留欢. 抽吸对高超声速内收缩进气道涡流区及起动性能的影响[J]. 航空动力学报, 2016, 31(7): 1630-1637.
[21] 王建勇, 谢旅荣, 赵 昊, 等. 一种改善高超声速进气道自起动能力的流场控制研究[J]. 航空学报, 2015, 36(5): 1401-1410.
[22] Xie W Z, Ma G F, Guo R W, et al. Flow-Based Prediction for Self-Starting Limit of Two-Dimensional Hypersonic Inlets[J]. Journal of Propulsion & Power, 2016, 32(2): 1-9.
[23] 谢文忠, 高晓天, 谭慧俊, 等. 一种大内收缩比、定几何二元高超声速进气道及设计方法[P]. 江苏:CN107091157A,2017-08-25.
[24] David E, Reubush L T, Vincent L R. Review of X-43A Return to Flight Activities and Current Status[R]. AIAA2003-7085.
[25] 陈卫明. 二元高超声速进气道自起动特性的影响因素分析[D]. 南京:南京航空航天大学, 2013.
[26] Zhenguo W, Yilong Z, Yuxin Z, et al. Prediction of Massive Separation of Unstarted Inlet Via Free-InteractionTheory[J]. AIAA Journal, 2015, 53(4): 1108-1112.